$ed^{1,2}$ were however proposed using a better polydispersity corrective factor⁵. It can be seen that halogen substitutions in the aromatic ring decrease the polymer-solvent interactions. Similar trends were observed in chloro-substituted polystyrenes⁶. The comparison between the σ factors show a specific effect of the *ortho-substi*tuent: as already discussed³, poly (2, 4, 5-trichlorophenyl methacrylate) has a more flexible chain than poly (phenyl methacrylate) in spite of the three chlorine atoms attached to the aromatic ring but the contrast between the behaviour of poly(4-chlorophenyl methacrylate) and that of poly(2 chlorophenyl methacrylate) indicates clearly that only the chlorine atom in *ortho-position* tends to increase the flexibility. A quite similar conclusion

can be drawn by comparing poly(2-tbutylphenyl methacrylate) (σ = 2.40)⁷ with poly(4-t-butylphenyl methacrylate) $(\sigma = 2.57)^8$ but in this case the differences are less marked. Undoubtedly for poly(2-chlorophenyl methacrylate) a steric contribution of the chlorine atom in *ortho-position* cannot be considered alone since the effect of the very bulky t-butyl substituent appears to be less important. Additional contributions are very likely such as repulsive forces between C=O and C-C1 dipoles and also resonance effects which are particularly high in nuclear substituted phenyl methacrylates as shown by Otsu *et al. 9.* It is reasonable to think that the combined actions of these factors can modify the configuration of the side groups to such an extent that the chain flexibility is increased.

REFERENCES

- 1 Hadjichristidis, N., Devaleriola, M. and Desreux, V. *Eur. Polym. J.* 1972, 8, 1193
- 2 Tricot, M. and Desreux, V. *Makromol. Chem.* 1971, 149, 185
- 3 Hadjichristidis, N. to be published
- 4 Sumrell, G., Campbell, P. G., Ham, G. E. and Schramm, *C. H. J. Am. Chem. Soc.* 1959, 81, 4310
- 5 Niezette, J., Hadjichristidis, N. and Desreux, V. *Makromol. Chem.* 1976, 177, 2069
- 6 Brandrup, J. and Immergut, E. M. 'Polymer Handbook', 2nd Edn, Wiley, New York, 1975
- 7 Tricot, M., Bleus, J. P., Riga, J. P. and Desreux, V.MakromoL *Chem.* 1974, 175,913
- 8 Gargallo, L. to be published
9 Otsp T. Ito T. and Imoto
- 9 Otsu, T., Ito, T. and Imoto, *M. J. Polym. Sci. (A-l)* 1966, 733

Effect of chain length and branching on the interaction energies of polymer molecules

Rajeev Goel, Anil Kumar and Santosh K. Gupta

Department of Chemical Engineering, Indian Institute of Technology, Kanpur-20B016, India (Received 26 July 1976)

One of the approaches in the study of the excluded volume effect in polymer science is the modified Flory theory¹. Results of this theory have been found to be in better agreement with experiments compared to other theories. In this theory, one requires the potential energy of interaction, *V(S),* for a polymer molecule having a fixed radius of gyration, S. Results on *V(S)* are available in the literature for linear chains having a large number of statistical segments^{1,2}. In this work, $V(S)$ has been obtained for small chain lengths for linear as well as branched molecules.

FORMULATION

A polymer molecule is modelled as a sequence of n independent statistical segments, each having a mean square length, l^2 . The time-averaged segment density at position r from the centre of mass has been obtained exactly for a molecule having any branched architecture as^{3-5} :

$$
\rho^{0}(r) = \frac{1}{\pi^{3/2}} \sum_{j=1}^{n} c_{j}^{3} \exp(-c_{j}^{2} r^{2})
$$
 (1)

where c_i is given by:

$$
c_j^2 = \frac{gn(n+2)}{n} \equiv \frac{c_j^{*2}}{\langle S^2 \rangle_{0b}}
$$

4(n+1) $\langle S^2 \rangle_{0b} \sum_{i=1}^n v_{ji}^2$ (2)

 $\langle S^2 \rangle_{0,b}$ is the mean square radius of gyration of the chain, v_{ij} are the elements of a matrix V which depends on the molecular architecture of the chain³⁻⁵ and g is the ratio of $\langle S^2 \rangle_{0,b}$ to the mean square radius of gyration of a linear chain having the same number of statistical segments:

$$
g = \langle S^2 \rangle_{0,b} / \langle S^2 \rangle_{0,\text{linear}} \tag{3}
$$

g is known analytically^{6,7} for common branched polymers.

Fixman^{1,8} has shown that the potential energy of interaction, *V(S),* for a polymer molecule having a radius of gyration S is given by:

$$
\frac{V(S)}{kT} = \frac{\beta^*}{2} \int \rho 0^2(\mathbf{r}, S) d\mathbf{r}
$$
 (4)

where k is the Boltzmann constant, T the absolute temperature and β^* the

binary cluster integral characterizing the potential energy of interaction, V_{ii} , between the *i*th and *j*th statistical segments:

$$
\beta^* = \int \left[1\{-\exp - V_{ij}(\mathbf{r}_{ij})/kT\} \right] d\mathbf{r}_{ij}
$$
\n(5)

In equation (4), ρ^{0} (r, S) is the averaged segment density for a chain having a radius of gyration S and is different from the segment density $\rho^{0}(r)$ which is the value without the latter constraint.

As it is extremely difficult to obtain $\rho^0(r, S)$ numerically¹, one approximates it by $\rho^0(r)$ with S^2 substituted for $\langle S^2 \rangle_{0b}$ in equations (1) and (2) to give:

$$
\rho^{0}(\mathbf{r}, S) \simeq \frac{1}{\pi^{3/2}} \sum_{j=1}^{n} D_{j}^{3} \exp(-D_{j}^{2} r^{2})
$$
\n(6)

where

$$
D_j^2 = \frac{c_j^{*2}}{S^2} \tag{7}
$$

This approximation is completely analogous to that made by Flory⁹ Equations (4) , (6) and (7) give finally: *Notes to the Editor*

$$
\frac{V(S)}{kT} = \frac{\beta^*}{2S^3} \frac{1}{\pi^{3/2}}
$$

$$
\times \sum_{j=1}^n \sum_{i=1}^n \frac{c_i^{*3} c_j^{*3}}{(c_i^{*2} + c_j^{*2})^{3/2}} \qquad (8)
$$

Since the total number of pairwise interactions in a molecule is $n(n + 1)/2$, equation (8) may be written alternatively as:

$$
\frac{V(S)}{kT} = \frac{n(n+1)\beta^*}{2S^3} \phi \tag{9}
$$

where:

$$
\phi = \frac{1}{n(n+1)\pi^{3/2}} \sum_{i=1}^{n} \sum_{j=1}^{n}
$$

$$
\times \frac{c_{j}^{*3}c_{i}^{*3}}{[c_{i}^{*2} + c_{i}^{*2}]^{3/2}}
$$
 (10)

Equation (10) can be solved for polymer chains having different architecture and n , and their effects on the potential energy of interaction can be studied.

RESULTS AND DISCUSSION

The quantity ϕ characterizing the potential energy of interaction, *V(S),* has been evaluated numerically for linear chains as well as for a 3-branch regular comb chain shown in *Figure 1* for different values of n . The results are shown in *Table 1. The* number ot segments required for asymptotic results to be applicable is found to de-

Figure 1 A three-branch regular **comb chain**

pend on the molecular architecture of the chain. For linear chains, the asymptotic value of ϕ , 0.1416, is identical to that calculated by Casassa and Orofino².

The effect of molecular architecture on the asymptotic value of ϕ is shown *in Table 2* in which results for several uniform star chains are presented. It is observed that ϕ increases with the degree of branching. This is expected physically because, for the same value of S, a more highly branched chain would have a greater density of segments near the centre of mass, leading to higher interaction energies.

The calculated values of ϕ and $V(S)/kT$ can be used in the Boltzmann factor along with the distribution of the radius of gyration, $W^0(S)$, to study the excluded volume problem. It may be pointed out that since $V(S)$ occurs in the exponential term, small changes in the value of ϕ may lead to significant variations in the expansion factor, α_S .

CONCLUSIONS

In this work, it has been found that the attainment of the asymptote is postponed to higher values of n in branched chains. Also, the interaction energies are found to increase with the degree of branching, as expected physically. These are expected to have a significant influence in the computation of the expansion factor.

Table 1 ϕ for different values of *n* for lin**ear and three-branched regular comb chains**

Linear		3-branch regular comb	
n		n	
4	0.1340	7	0.1361
8	0.1399	14	0.1399
12	0.1410	21	0.1408
16	0.1414	28	0.1412
20	0.1415	56	0.1417
40	0.1416	91	0.14185
60	0.1416	98	0.141865
80	0.1416		
100	0.1416		

Table 2 ~ for a p branch regular star **chain for large values of n**

REFERENCES

- 1 Yamakawa, H. 'Modern Theory of Polymer Solutions', Harper and Row, **New** York, 1971
- 2 Casassa, E. F. and Orofino, T. A. J. *Polym. Sci.* 1959, 35,553
- Gupta, S. K., Kumar, A. and Forsman, *W. C. Chem. Phys. Lett.* 1976, 39,291
- Goel, R., Kumar, A. and Gupta, S. K. *Chem. Phys. Lett.* 1976, 40, 45
- 5 Debye, P. and Bueche, F.J. *Chem. Phys.* 1952, 20, 1337
- 6 Zimm, B. H. and Stockmayer, W. H. *J. Chem. Phys.* 1949, 17, 1301
- 7 Forsman, W. C. *Macromolecules* 1968, 1,343
- 8 Fixman, M. J. *Chem. Phys.* 1955, 23, 1656
- 9 Flory, P. J. 'Principles of Polymer Chemistry', Cornell University Press, Ithaca, New York, 1953